
Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 1

Types, Operators, and Expressions

Types

In general, the structure of a Python program is as follows:

 Programs are composed of modules.

 Modules contain statements.

 Statements contain expressions.

 Expressions create and process objects.

In Python, everything is an object. Including values. Even simple numbers qualify, with values (e.g.,

99), and supported operations (addition, subtraction, and so on). In Python, data takes the form of

objects—either built-in objects that Python provides, or objects we create using Python classes or

external language tools such as C extension libraries.

Following table shows fundamental Python‟s built-in object types and some of the syntax used to

code their literals—that is, the expressions that generate these objects:

Object Type Examples

Numbers 12, 2.67, 6+8j, 0b1011

Strings „hai‟, “hello”, “Python‟s Features”, str(„Python‟)

Lists [1,2,3], [1,2,‟three‟], list(range(10)), list(„hai‟)

Tuples (1,2,3), (1,2,‟three‟), tuple(range(10)), tuple(„hai‟)

Sets {1,2,3}, set(„hai‟)

Dictionaries {„Mon‟:1, „Tue‟:2, „Wed‟:3}, dict(hours=10)

Following are some more types available in Python:

Object Type Examples

Files open(„abc.txt‟)

Functions def, lambda

Modules import, __module__

Classes objects, types, metaclasses

None None

Booleans True, False

Numbers

Numbers include the following:

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 2

 integers

 floating-point numbers

 complex numbers

 decimals with fixed precision

 rational numbers with numerator and denominator

 sets

Using third party extensions we have more types like matrices, vectors, etc.

Following are examples of numeric literals and constructors:

Literal Description

12, -887, 0, 999999999999999999999998 Integers (unlimited size)

1.23, 1., 3.14e-10, 4E210, 4.0e+210 Floating-point numbers

0o177, 0x9ff, 0b101010 Octal, hex, and binary literals

6+4j, 2.0+9.0j, 7J Complex number literals

Decimal('13.0'), Fraction(4, 7) Decimal and fraction extension types

bool(X), True, False Boolean type and constants

Floating-point numbers are implemented as C doubles in standard Cpython. The functions hex, oct,

and bin can be used to convert integers to hexadecimal, octal, and binary formats respectively.

Complex numbers are internally implemented as pairs of floating-point numbers. Complex numbers

can be ended with j or J. Complex numbers can also be created with complex(real, imag) function

call.

We can use built-in functions like: pow, abs, round, int, hex, bin, etc on numbers. We can also use

utility modules like random, math as follows:

>>> import random

>>> random.random()

0.865758460309634

>>> random.choice(range(100))

96

>>> import math

>>> math.sqrt(7)

2.6457513110645907

Decimals

Decimals are fixed precision floating point numbers. Decimals can be precise up to n digits after the

decimal point. For example, 0.1+0.1+0.1-0.3 gives 5.551115123125783e-17. In such cases, we can

use decimal as follows:

>>> from decimal import Decimal

>>> x=Decimal('0.1')

>>> y=Decimal('0.3')

>>> x+x+x-y

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 3

Decimal('0.0')

Default precision for decimal is 28 digits. We can set the precision as follows:

>>> import decimal

>>> decimal.Decimal(1) / decimal.Decimal(7)

Decimal('0.1428571428571428571428571429')

#Set precision to 4 digits

>>> decimal.getcontext().prec = 4

>>> decimal.Decimal(1) / decimal.Decimal(7)

Decimal('0.1429')

Fraction

Fraction objects are used to implement rational numbers. It keeps both numerator and denominator

explicitly. Following are examples for working with fractions in Python:

>>> from fractions import Fraction

>>> x=Fraction(2,7)

>>> y=Fraction(3,7)

>>> x+y

Fraction(5, 7)

>>> x*y

Fraction(6, 49)

>>> print(x)

2/7

Strings

A string is a sequence of one character strings. Strings are used to store textual information. Examples

of strings:

„Python‟

„Ramesh Kumar‟

“A”

“123”

Sequence Operations on Strings

We can find the length (number of characters) of a string using the pre-defined function len:

>>>s = “hello”

>>>len(s)

5

We can also fetch individual characters from the strings using indexing. The index of first character

starts from 0, next is 1, and so on:

>>>s = “hello”

>>>s[0]

„h‟

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 4

Negative indexes are used to index from right to left in a string:

>>>s = “Python”

>>>s[-1]

„n‟

Sequences like strings also support another form of indexing called slicing which is used to extract a

part of the string:

>>>s = “Python”

>>>s[1:3]

„yt‟

More examples on slicing:

>>>s = “Python”

>>>s[2:]

thon

>>>s[:4]

„Pyth‟

>>>s[:len(s)]

„Python‟

>>>s[:-1]

„Pytho‟ #Everything except last character

>>>s[:]

„Python‟

Strings can be concatenated using the '+' operators as shown below:

>>>s = “Python”

>>>s + “ Rocks”

„Python Rocks‟

A string can be printed multiple times by using the power (**) operator as shown below:

>>>s = “Yo ”

>>>s**5

„Yo Yo Yo Yo Yo ‟

String Immutability

In Python, every object can be classified as mutable or immutable. Numbers, strings, and tuples are

immutable, i.e., once assigned, values cannot be changed. Lists, dictionaries, and sets are mutable. For

example, following will give error:

>>>s = “Python”

>>>s[1] = „a‟

...

TypeError: 'str' object does not support item assignment

String Specific Methods

The find method can be used to find position of a given substring in the string:

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 5

>>>s=“Python”

>>>s.find(„Py‟)

0

>>>s.find(„ab‟)

-1

The replace method can be used to replace a substring with a given string:

>>>s=“Python”

>>>s.replace(„Py‟, „Go‟)

„Gothon‟

>>>s.replace(„ab‟, „Go‟)

„Python‟

The split method can be used to split a line into words based on the given delimiter. Default delimiter

is space:

>>>line='this is a line„

>>>line.split()

['this', 'is', 'a', 'line']

>>>line=„this,is,a,line‟

>>>line.split(„,‟)

['this', 'is', 'a', 'line']

The upper and lower methods can be used to turn a string into upper or lower case respectively:

>>>s=„awesome‟

>>>s=s.upper()

>>>s

„AWESOME‟

>>>s=s.lower()

>>>s

„awesome‟

The isalpha and isdigit methods can be used to find whether a string is containing all alphabets or

digits respectively:

>>> s='alpha'

>>> s.isalpha()

True

>>> s.isdigit()

False

>>> s='123'

>>> s.isdigit()

True

The rstrip method can be used to remove white spaces at the right end of the string:

>>> line='this is a line '

>>> line.rstrip()

'this is a line'

>>> line

'this is a line '

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 6

We can substitute values in a string as follows:

>>> lang='Python'

>>> ver='3.x'

>>> 'Welcome to %s. Version %s.' % (lang,ver)

'Welcome to Python. Version 3.x.'

>>> 'Welcome to {0}. Version {1}.'.format(lang,ver)

'Welcome to Python. Version 3.x.'

>>> 'Welcome to {}. Version {}.'.format(lang,ver)

'Welcome to Python. Version 3.x.'

Booleans

Python provides Boolean data type called bool with values True and False. True represents integer 1

and False represents integer 0. bool is a sub class of integer class. Following are examples on

Booleans:

>>> True == 1

True

>>> True is 1

False

>>> True and False

False

>>> True + 10

11

>>> False * 9

0

Operators

Following are different types of operators in Python:

 Arithmetic operators

 Relational operators

 Assignment operators

 Logical operators

 Bitwise operators

 Membership operators

 Identity operators

Arithmetic Operators

Following are various arithmetic operators available in Python:

Operator Description Example

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 7

+ Add two operands x+y = 26

- Subtract one operand from another x-y = 14

* Multiply one operand with another x*y = 120

/ Divide one operand with another x/y = 3.333

% Remainder of division between two operands x%y = 2

** x to the power of y x**y = 64000000

// Floor division. Removes decimal part after division. x//y = 3

Note: In above examples, x = 20 and y = 6

Relational Operators

Following are various relational operators available in Python:

Operator Description Example

= =
Returns true if values of both operands are equal . Otherwise

false.
x==y is false

!=
Returns true if values of both operands are not equal.

Otherwise false.
x!=y is true

< >
Returns true if values of both operands are not equal.

Otherwise false.
x!=y is true

>
Returns true if left operand is greater than the right operand.

Otherwise false.
x>y is true

<
Returns true if left operand is less than the right operand.

Otherwise false.
x<y is false

>=
Returns true if left operand is greater than or equal to the right

operand. Otherwise false.
x>=y is true

<=
Returns true if left operand is less than or equal to the right

operand. Otherwise false.
x<=y is false

Note: In above examples, x = 20 and y = 6

Assignment Operators

Following are various assignment operators available in Python:

Operator Description Example

= Assigns value of right side operand to left side operand z=x; z=20

+=
Adds operand on left side with operand on right side and

assigns the value to left side operand.
z+=x; z=20

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 8

-=
Subtracts operand on right side with operand on left side and

assigns the value to left side operand.
z-=x; z=-20

*=
Multiplies operand on left side with operand on right side and

assigns the value to left side operand.
z*=x; z=0

/=
Divide operand on left side with operand on right side and

assigns the value to left side operand.
z/=x; z=0.0

%= Assigns remainder of division to left side operand. z%=x; z=0

= Assigns left operand power right operand to left side operand. z=x; z=0

//= Assigns result of floor division to left side operand. z//=x; z=0

Note: In above examples, x = 20 , y = 6, and z = 0

Bitwise Operators

Following are various bitwise operators available in Python:

Operator Description Example

& (and) Performs bit-wise and of both operands x&y = 1

| (or) Performs bit-wise or of both operands x|y = 5

^ (ex-or) Performs exclusive-or of both operands x^y = 4

~ Performs 1‟s complement of the operand ~x = -6

<< Performs left shift of the left operand by n number of times x<<2 = 20

>> Performs right shift of the left operand by n number of times x>>1 = 2

Note: In above examples, x = 5 , y = 1

Logical Operators

Following are various logical operators available in Python:

Operator Description Example

and
If both left side and right side expressions are true, it

returns true. Otherwise, false.
True and True is True

or
If either or both of left side and right side expressions

are true, it returns true. Otherwise, false.
True or False is True

not
If expression evaluates to true, it returns false or if the

expression evaluates to false, it returns true.
not True is False

Membership Operators

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 9

Following are the membership operators available in Python:

Operator Description Example

in
Evaluates to true if it finds a variable or value in the

given sequence. Otherwise, it returns true.
y in x is True

not in
Evaluates to true if it doesn‟t find a variable or value in

the given sequence. Otherwise, it returns false.
y not in x is False

Note: In above examples, x = [1,2,3,4,5,6] , y = 2

Identity Operators

Following are the identity operators available in Python:

Operator Description Example

is
Evaluates to true if both the variables point to the same

object in memory.
x is y returns True

is not
Evaluates to true if both the variables does not point to

the same object in memory
x is not y returns False

Note: In above examples, x = 10, y = x

Expression Evaluation

A Python program contains one or more statements. A statement contains zero or more expressions.

Python executes a statement by evaluating its expressions to values one by one. Python evaluates an

expression by evaluating the sub-expressions and substituting their values.

Literal Expressions

A literal expression evaluates to the value it represents. Following are some examples of literal

expressions:

10 => 10

„Welcome to Python‟ => „Welcome to Python‟

7.89 => 7.89

True => True

Binary Expressions

A binary expression consists of a binary operator applied to two operand expressions. Examples:

2*6 => 12

8-6 => 2

8==8 => True

1000 > 100 => True

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 10

„hello‟ + „world‟ => „helloworld‟

Unary Expressions

An unary expression contains one operator and single operand. Examples:

-(5/5) => -1

-(3*4) => -12

-(2**4) => -16

-10 => -10

Compound Expressions

In a binary or unary expression, if an operand itself is an expression, such expression is known as a

compound expression. Examples:

3 * 2 + 1 => 7

2 + 6 * 2 => 14

(2 + 6) * 2 => 16

Variable Access Expressions

A variable access expressions allows us to access the value of a variable. Examples:

>>>x = 10

>>>(x + 2) * 4

48

>>>x

10

Control Statements

Generally, a Python script executes in a sequential manner. If a set of statements should be skipped or

repeated again, we should alter the flow of control. The statements which allow us to alter the flow of

control are known a control statements. Python supports the following control statements:

 if

 if...else

 elif ladder

 while

 for

 break

 continue

if Statement

A if statement can be used as a one way decision making statement. The syntax of if statement is as

follows:

if condition:

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 11

 statement1

 statement2

 statementN

if...else Statement

A if...else statement can be used as a two way decision making statement. The syntax of if...else

statement is as follows:

if condition:

 statement1

 statement2

 statementN

else:

 statement1

 statement2

 statementN

if...else Ternary Expression

Python supports if...else ternary expression. Its syntax is as follows:

expr1 if condition else expr2

Following is an example which demonstrates if...else ternary expression:

a=10

b=5

c = a if a>b else b

print(c)

while Loop

A while loop can be used to repeat a set of statements based on a condition. The syntax of while loop

is as follows:

while test:

 statements

else: #optional

 statements

As mentioned above, else part is optional. The else part executes only when break is not used.

for Loop

A for loop can be used to repeat a set of statements. The syntax of for loop is as follows:

for target in object:

Module 2 - Types, Operators, and Expressions

Downloaded from startertutorials.com (or) stuts.me 12

 statements

else: #optional

 statements

The object in the above syntax should be a collection of values like a list, string, tuple, etc. Like while

loop, the else part is optional and executes only when break is not used.

break and continue

Both break and continue and jump statements which are used inside while loop or for loop. When

break is used inside the loop, the control moves to the statement outside the enclosing loop. When

continue is used inside the loop, the control moves to the first statement of the enclosing loop

skipping all the remaining statements after the continue statement inside the enclosing loop.

